TitleCharacterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta
Publication TypeJournal Article
Year of Publication2019
AuthorsMoeller FU, Webster NS, Herbold CW, Behnam F, Domman D, Albertsen M, Mooshammer M, Markert S, Turaev D, Becher D, Rattei T, Schweder T, Richter A, Watzka M, Nielsen PHalkjaer, Wagner M
JournalEnvironmental Microbiology
Volume21
Issue10
Pagination3831 - 3854
Date PublishedJan-10-2021
ISSN1462-2912
Abstract

Marine sponges represent one of the few eukaryotic groups that frequently harbour symbiotic members of the Thaumarchaeota , which are important chemoautotrophic ammonia‐oxidizers in many environments. However, in most studies, direct demonstration of ammonia‐oxidation by these archaea within sponges is lacking, and little is known about sponge‐specific adaptations of ammonia‐oxidizing archaea (AOA). Here, we characterized the thaumarchaeal symbiont of the marine sponge Ianthella basta using metaproteogenomics, fluorescence in situ hybridization, qPCR and isotope‐based functional assays. ‘Candidatus Nitrosospongia ianthellae’ is only distantly related to cultured AOA. It is an abundant symbiont that is solely responsible for nitrite formation from ammonia in I. basta that surprisingly does not harbour nitrite‐oxidizing microbes. Furthermore, this AOA is equipped with an expanded set of extracellular subtilisin‐like proteases, a metalloprotease unique among archaea, as well as a putative branched‐chain amino acid ABC transporter. This repertoire is strongly indicative of a mixotrophic lifestyle and is (with slight variations) also found in other sponge‐associated, but not in free‐living AOA. We predict that this feature as well as an expanded and unique set of secreted serpins (protease inhibitors), a unique array of eukaryotic‐like proteins, and a DNA‐phosporothioation system, represent important adaptations of AOA to life within these ancient filter‐feeding animals.

URLhttps://sfamjournals.onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.14732
DOI10.1111/emi.v21.1010.1111/1462-2920.14732
Short TitleEnviron Microbiol

Address

Australian Centre for Ecogenomics
Level 5, Molecular Biosciences Bldg
University of Queensland
ST LUCIA QLD 4072
Brisbane, Australia

Stay connected

Copyright

© 2010-2020 Australian Centre for Ecogenomics