TitleGene correlation networks reveal the transcriptomic response to elevated nitrogen in a photosynthetic sponge
Publication TypeJournal Article
Year of Publication2020
AuthorsLuter HM, Kenkel CD, Terzin M, Peirce T, Laffy PW, Gibb K, Webster NS
JournalMolecular Ecology
Volume29
Issue8
Pagination1452 - 1462
Date PublishedJan-04-2020
Abstract

Nutrient levels in coastal environments have been increasing globally due to elevated inputs of sewage and terrigenous sediments carrying fertilizers. Yet, despite their immense filtering capacities, marine sponges appear to be less affected by elevated nutrients than sympatric benthic organisms, such as corals. While the molecular‐level stress response of sponges to elevated seawater temperatures and other toxicants has been defined, this study represents the first global gene expression analysis of how sponges respond to elevated nitrogen. Gene correlation network analysis revealed that sponge gene modules, coded by colours, became either highly upregulated (Blue) or downregulated (Turquoise, Black, Brown) as nitrogen treatment levels increased. Gene Ontology enrichment analysis of the different modules revealed genes involved in cell signalling, immune response and flagella motility were affected by increasing nitrogen levels. Notably, a decrease in the regulation of NF‐kappaB signalling and an increase in protein degradation was identified, which is comparable to metabolic pathways associated with the sponge thermal stress response. These results highlight that Cymbastela stipitata can rapidly respond to changes in the external environment and identifies pathways that probably contribute to the ability of C. stipitata to tolerate short‐term nutrient pulses.

URLhttps://onlinelibrary.wiley.com/doi/abs/10.1111/mec.15417
DOI10.1111/mec.v29.810.1111/mec.15417
Short TitleMol Ecol

Address

Australian Centre for Ecogenomics
Level 5, Molecular Biosciences Bldg
University of Queensland
ST LUCIA QLD 4072
Brisbane, Australia

Stay connected

Copyright

© 2010-2020 Australian Centre for Ecogenomics